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Abstract

Modulated continuous wave (CW) lasers cause photothermal effect that leads to rapid optical absorption and generation
of thermal waves around the irradiated nanostructures. In this work, we examined the effect of modulated CW laser
irradiation on the particle fragmentation process to enhance the thermal diffusivity of nanofluids. A facile and cost-
effective diode laser was applied to reduce the agglomerated size of Al2O3 nanoparticles in deionized water. The thermal
wave generation, which was determined by the modulated frequency of the laser beam and the optical and thermal
properties of the nanofluid, is also briefly discussed and summarized. The influence of laser irradiation time on nanoparticle
sizes and their size distribution was determined by dynamic light scattering and transmission electron microscopy. The
thermal diffusivity of the nanofluid was measured using the photopyroelectric method. The data obtained showed that
the modulated laser irradiation caused the partial fragmentation of some agglomerated particles in the colloids, with an
average diameter close to the original particle size, as indicated by a narrow distribution size. The reduction in the
agglomerated size of the particles also resulted in an enhancement of the thermal diffusivity values, from 1.444 × 10−3 to 1.
498 × 10−3 cm2/s in 0 to 30min of irradiation time. This work brings new possibilities and insight into the fragmentation of
agglomerated nanomaterials based on the photothermal study.
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Background
Metal oxide nanofluids have attracted a lot of attention
due to their enhanced thermal properties which allows
them to play specific roles in the development of heat
transfer equipment. Metal oxides nanofluids is well known
to possess enhanced thermo-physical properties such as
thermal diffusivity, thermal conductivity, and convective
heat transfer coefficients compared to those of base fluids
like oil or water. Al2O3 is an interesting oxide, as a mater-
ial for enhancing the heat transfer, because of its high
thermal conductivity. The thermal conductivity of nano-
fluids act as important properties in developing an
energy-efficient heat transfer equipment, mainly used in
industrial field such as automotive, electronics equipment,
and medical applications. The thermal properties of

nanofluids are sensitive to the size and shape of the nano-
particles (NPs) and their base fluids [1–5]. This poses a
problem as NPs have a tendency to aggregate quickly and
causes a decrease in thermal properties of the nanofluids
[6–8]. Recently, laser-produced nanoparticles methods
have been used to modify and generate NPs directly in the
base fluids [8–10] to be used in chemical, optical and ther-
mal engineering, phototherapy, catalysis, and heat trans-
fer. The size and dispersion of it can be controlled by
varying laser parameters, such as the laser wavelength,
pulse duration, number of laser pulses, and pulse energy
[11, 12]. In general, the interaction between the laser and
the particles not only caused photothermal ablation but
also generated thermal waves (TWs) around the nano-
structures, and their surrounding medium, which lead to
a reduction in size of the particles or the formation of NPs
with a specific size distribution. Studies on the optical fab-
rication of NPs by laser irradiation showed that the laser
ablation of solid targets [12–15] and fragmentation from
suspended microcrystalline powders [16–26] can be
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employed by either using powerful pulsed lasers or
low-power intensity CW laser sources. Pulsed lasers have
been used in many studies for the laser ablation of solid
targets in liquids. Although laser irradiation is a useful
technique to assist the formation of NPs in nanofluids, the
efficiency of the laser irradiation process is quite sensitive
to the pulse duration. However, in the case of pulsed laser
irradiation, the NP size and distribution were significantly
influenced by the number and irradiation times of the
laser pulses. This implies that it was still difficult to
achieve more particles production with control over the
size distributions of the produced nanoclusters. In recent
years, CW lasers have been used in several studies for the
fabrication of NPs [27–30]. There are several advantages
in using CW laser sources as opposed to other optical
sources, as they are generally less expensive, smaller, and
have a more portable setup that can be potentially com-
bined with other devices, especially as a photothermal
therapy source for medical application and the reshaping
and fabrication of nanomaterials [30, 31]. Recently, many
experimental and theoretical investigations aimed at un-
derstanding the mechanism of laser irradiation have been
performed [24, 31–36]. On the basis of calculations and
experimental confirmations, the laser ablation and frag-
mentation of NPs can be driven by the photothermal (PT)
effect [37–41]. The PT effect allows for the optimization
and monitoring of the efficiency of the laser irradiation
with different optical sources in different experimental de-
signs [42–49]. Modulated CW laser is generally used in
applications involving the PT effect. It can be a good PT
source of light given an optimal modulation frequency.
An increase in the efficiency of the thermal waves and the
signal to noise ratio (S/N) can be observed, making it
more suitable for the NPs fragmentation process. More-
over, a careful optimization of the experimental conditions
can establish control over size distributions of the pro-
duced nanoclusters and thermal properties of nanofluids.
However, no detailed study exists in literature for the PT
effect of modulating CW laser on the formation and size
of NPs and their thermal properties.
In the paper, a CW diode laser was used for the frag-

mentation of clustered Al2O3 particles to enhance the
thermal diffusivity of the nanofluids, under various irradi-
ation times. The basis of the thermal wave generation of
the modulated CW laser beam was briefly summarized
and the effect of the modulated beam frequency and phys-
ical parameters were discussed. The results of the laser
fragmentation process were analyzed using transmission
electron microscopy (TEM) and dynamic light scattering
(DLS) analysis. Finally, the effect of laser treatment on the
thermal diffusivity of the nanofluids was investigated. The
photopyroelectric (PPE) technique was used as a valid
method for measuring the thermal diffusivity of the nano-
fluids with very high precision and resolution.

Thermal Wave Generation of the Modulated Laser Beam
In the CW modulated laser, the absorption of the modu-
lated incident light beam causes a thermal wave field,
which is a result of the periodic temperature distribution
on the surface [50]. In the case of modulation with dif-
ferent frequencies, when the surface of an absorbing
material is irradiated with a modulated optical radiation
at frequency f, where flux is the source intensity and is
the modulated angular frequency of the incident light,
the absorption of the modulated incident light beam will
results in the generation of thermal waves on the sample
surface. Figure 1 is a schematic illustration of the phe-
nomena resulting from the exposure of a sample surface
to a modulated CW laser beam. The acoustic thermal
energy that arises due to the PT effects leads to the
transport of thermal waves through the sample and sur-
rounding medium.
In the case of nanofluid with an amount of solid parti-

cles, thermal waves generated in the solid particles dif-
fuse into both media including the other solid particles
and the adjacent fluid layer, in a 3-D thermal wave field.
The thermal wave diffuses in 3-D, if the heat source is
small compared to the lateral dimensions of the sample;
this thermal diffusion equation needs to be solved using
cylindrical symmetry. Based on Fourier series theory, the
relationship between the temperature gradient (∇T) and
the conduction rate (k) in the direction of energy flow
(q) in a material is

q ¼ −k∇T ð1Þ

, and the differential equation of heat conduction is [50]

∇2T ¼ 1
α
∂T
∂t

ð2Þ

The thermal diffusion equation in the solid particle, as
a distributed heat source, is [51]

Fig. 1 Photothermal phenomena caused by illumination of a surface
by modulated beam of the light
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The thermal diffusion equations in base fluid medium
can be written as [51]
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The thermal wave propagation in a material depends
on its thermal diffusivity α = (k/ρc)1/2, where k denotes
the thermal conductivity, ρ the density, and c the heat
capacity. The thermal wave propagating T(x,t) in the
one-dimensional approach can be found by solving the
complex equation

T x; tð Þ ¼ T 0e
−x=μð Þe i ωt−x=μð Þ½ � ð5Þ

where σj = (1 + i)/μj is thermal wave diffusion coefficient,
μ = (α/πf )1/2 is the thermal diffusion length at frequency
f, and α is the thermal diffusivity of liquid sample; To is
the initial change in temperature produced by the
source, and the wave is attenuated by a factor of 1/e.
Figure 2a, b clearly shows the thermal decay of the amp-
litude and phase of the thermal waves (Eq. 5) as a func-
tion of distance (depth) away from the source at x = x0.
The rate of the steep (exponential) amplitude decay
away from the source depends on the thermal diffusivity
of medium; the higher the diffusivity, the gentler the
slope. A similar behavior is observed for the phase. For
the low thermal diffusivity, the induced thermal waves
have a short thermal wavelength and they are subjected
to a large attenuation. Therefore, heat transfer at the
particle surface does not occur, and PT effect starts to
reduce, because the main characteristic of thermal wave
is that it decays strongly [52, 53]. This simulation
showed that the thermal effect is predominated at parti-
cles with high thermal diffusivity and induced peeling off
of the particle surface. In this work, water is used as

liquid of higher thermal diffusivity than of the other liq-
uids, thus produces higher S/N compared to the latter.

Methods
Preparation of Nanofluids
The nanofluids were prepared by dispersing 0.05 g Al2O3

NPs (11 nm, Nanostructured and Amorphous Materials,
Inc.) into 25ml deionized (DI) water. One volume per-
cent polyvinylpyrrolidone (PVP) (K25, MW–29000,
Aldrich Chemistry) was added to stabilize the nano-
fluids; Al2O3 NPs in water have a strong tendency to
form aggregates [54, 55]. The suspension was stirred in
about 1 h then the mixture was subjected to probe son-
ication for 30 min (VCX 500, 25 kHz, 500W) to ensure
homogeneous particle distribution. After the suspension
was mixed thoroughly for 30 min, the hydrodynamic size
of the agglomerated particles in the solution was moni-
tored using DLS.

Laser Fragmentation Process
The laser fragmentation process by a modulated CW
laser beam is depicted in Fig. 3a. The experimental setup
for the CW modulated laser is a fairly simple experi-
ment. A cuvette containing 2 ml of the sample solution
was placed on a stirring plate and irradiated along the
vertical axis with a CW diode pumped solid state laser
(532 nm, 200mW, MGL 150(10)). The laser was modu-
lated using an optical chopper (SR540) at a modulation
frequency of 10 Hz, to produce a reasonably high S/N.
The laser was focused on about 0.1 mm (2.5 kW/cm2) of
the solution surface in the quartz cuvette using a 10 cm
focal length lens. Magnetic stirring was carried out in
order to ensure homogeneous particle distribution. The
process was repeated in 10 and 30 min. After each ex-
periment, the morphologies of the obtained colloidal
suspensions were analyzed by TEM (H-7100, Hitachi,
Tokyo, Japan), and size distribution of the Al2O3 NPs in
solution were determined using the UTHSCSA

(a) (b)
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Fig. 2 a Amplitude and b phase of Eq. (5) with thermal diffusivity α as a parameter
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ImageTool (version 3.0) software. The hydrodynamic
size of the agglomerated particles in the solution was ob-
tained from the DLS analysis using the Nanophox
Analyzer (Sympatec GmbH, D-38678), and an average
was taken from at least four measurements.

Thermal Diffusivity Measurements
The details of the experimental setup for thermal diffu-
sivity measurements in liquid samples can be found else-
where [56]. The PPE technique has been shown to be a
useful method to analyze thermal properties of several
kinds of liquids, with very high precision and resolution
[51–53, 56–59]. The advantage of this technique is that
we used a small limited volume together with a short
measurement time [56–59]. PPE technique was
employed to measure the thermal diffusivity of the
Al2O3 nanofluids. Figure 3b shows the PE signal gener-
ation chamber or cell utilized in the PPE technique. The
cell contained a copper foil (50 μm thickness) acted as a
PE generator and a 52-μm polyvinylidene difluoride
(PVDF) film (MSI DT1-028 K/L) acted as a PE detector,
and the nanofluid sample was placed in this cavity. Since
PVDF film is very flexible, it was fixed with silicon glue
to Perspex substrate. The copper foil surface was coated
with a very thin layer of carbon soot to act as an efficient
light-to-heat converter. The intensity of a diode laser

(532 nm, 200 mW) was modulated by the optical chop-
per (SR540) before illumination on copper foil. In the
cell, the thermal wave propagates across the liquid and
reaches the PE detector, which generates a PE signal
proportional to the intensity of the thermal wave. The
PE signal generated by PVDF detector was analyzed by
using a lock-in amplifier (SR.530) to produce PE ampli-
tude and phase signals. To avoid vibrations and possible
contributions of the PVDF sensor, its bottom rear face
was attached to a Perspex container. The experiment
was done for the cavity scan. The frequency at 6.7 Hz
was chosen for a thermally thick regime for reasonably
high signal amplitude in the system. The measurements
were performed at room temperature (approximately 22
°C). Measurements were repeated five times for a par-
ticular sample, and the averaged thermal diffusivity value
was taken. The LabVIEW software, installed in PC, was
used to capture the PE signal and the data were analyzed
using Origin 8. The temperature field of the experimen-
tal system can be calculated according to the thermal
wave cavity conduction theory [57]. The PE signal de-
tected by PVDF sensor, the PE signal (V), is determined
by the cavity length distance and sample thermal
diffusivity:

V f ; lð Þ ¼ V 0 exp − 1þ ið ÞALð Þ ð6Þ

(a)

(b)

Fig. 3 a Block diagram of experimental setup used in fragmentation of particles by a modulated CW laser beam and b schematic view of the
photopyroelectric (PPE) configuration detection cell for thermal diffusivity measurement
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ln V f ; lð Þj j ¼ ln V 0j j−AL ð7Þ

φ ¼ φ0−AL ð8Þ

where A = (πf/α)1/2 to obtain this expression, V(f, l) is
the complex PE signal, Vo and φ are the amplitude and
phase of PE signal, f is the modulation frequency, and α
is the thermal diffusivity of sample. From the slope fit-
ting parameter A = (πf/α)1/2 of phase and ln(amplitude)
as a function of cavity scan, thermal diffusivity of liquid
can be calculated [58].

Results and Discussion
Thermal Wave Enhancement
There are some key parameters that should be consid-
ered to generate strong thermal wave amplitude:

a. Modulation frequency of the modulation light

From Eq. (5), there should be an optimum modulation
frequency to maximize the thermal wave amplitude. Un-
like other waves, thermal wave is very heavily damped
with a decay constant equal to the thermal diffusion
length of the medium of propagation [52]. The thermal
waves originating from no deeper than the thermal dif-
fusion length in the material contribute to the heat
propagation [53]. The thermal waves are reflected and
transmitted at the interface and the amplitude of the
thermal waves is attenuated within one thermal diffusion

length of the sample. With increasing modulation fre-
quency according to Eq. (5), the thermal diffusion length
decreases, and only light absorbed within the surface
layer contributes to the signal, while the thermal waves
will propagate deep into a solid if the material has a high
thermal diffusivity or if the thermal wave frequency is
low. In the experiment, one should carefully choose the
modulation frequency in order to get a sharp resonant
peak (actually a trough). The modulation frequency is
chosen in the spatial range. If the frequency is too low,
the signal is strong, but the peak is too flat for precise
determination of its maximum. While if the frequency is
too high, the peak is quite sharp, but the signal-to-noise
(S/N) ratio is compromised, which makes identification
of the peak position difficult.
Figure 4 shows the simulated real (in-phase) part of

PE signal as a function of cavity length of water, at dif-
ferent frequency from 7Hz to 100 Hz. It can be seen
that the S/N ratio was higher for lower frequencies, 7
Hz, while the peak was too flat for a precise determin-
ation of its maximum (Fig. 4a). However, the peak was
quite sharp at higher frequencies, 100 Hz, (Fig. 4d), with
a smaller output signal was obtained, which made the
identification of the peak position difficult [52]. It was
experimentally found that with 10 Hz as the operating
frequency, the S/N ratio was good in a range of frequen-
cies and had satisfactory signal amplitude in the system.

b. Optical absorption of the nanofluids

(a) (b)

(c) (d)

Fig. 4 The real (in-phase) part of PE signal vs relative cavity length for water at different frequencies: a 7 Hz, b 20 Hz, c 50 H, and d 100 Hz, thermal
diffusivity of water (αw,=0.00145 cm2.s−1)
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Each particle is a light scattering and absorbing light
object. The absorbed energy can be converted into heat,
and the summation of the light absorption of the parti-
cles is thermal extinction. The thermal wave amplitude
can be increased by increasing the optical absorption
[52, 59] with in the nanofluids. Particle size, shape, and
volume fraction, as well as the alternation of the base
fluids, have a major effect on the optical absorption of
the nanofluids. The Al2O3/water nanofluid had favorable
optical absorption. The optical energy absorbing 13% of
water increased with Al2O3 NPs in the base fluid and
was further enhanced when the concentration of the
NPs increased. With a high concentration of NPs, the
incident light of every particle was absorbed in a thin
surface layer.

c. Specific heat capacity of the nanofluids

Fabrication of small particle size Al2O3 in solution by
using a modulated CW laser fragmentation can increase
the heat storage of the nanofluid, due to the fact that the
specific heat capacity of base fluid decreased with de-
creasing the particle size and increasing amount of NPs,
due to increasing the surface area-to-volume ratio of the
particles [6]. Therefore, the smaller specific heat capacity
of the nanofluid allowed thermal wave amplitude due to
enhanced temperature rise and heat transfer.

d. Thermal diffusivity of the nanofluids

Heat is transferred from the solid particles to the sur-
rounding medium followed by thermal wave expansion,
where the amplitude of the thermal waves (TWs) is a
strong function of the thermal diffusivity. As shown in
Fig. 2, a larger thermal diffusivity is usually preferred for
higher thermal diffusion lengths and the thermal wave
amplitude below the surface decays slowly. Therefore,
the large thermal diffusivity of the base fluid is crucial
for effective heat transfer from the solid particles to the
fluid, thus, maximizing thermal wave generation. In this
work, water with a high thermal diffusivity (0.00145
cm2/s) was a good base fluid for efficient thermal wave
generation. The thermal diffusivity of water increased
with an increasing amount of NPs, due to increasing
Brownian motions [56]. The higher thermal diffusivity
and smaller specific heat of the Al2O3 nanofluid com-
pared to water allowed it to be excellent thermal wave
generator.

Experimental Results
Laser Fragmentation of the Al2O3 Nanoparticles
The TEM images showing the average size and size dis-
tribution of the Al2O3 NPs in deionized water/PVP solu-
tion before and after 10 min and 30 min of irradiation

are shown in Fig. 6. It can be seen that the collected ma-
terial was composed of clusters of nearly spherically
shaped particles, dispersed in a highly porous material.
Some agglomeration of around 100 nm in diameter was
observed and the mean size of the Al2O3 NPs was about
16.4 ± 7.8 nm (Fig. 5a). The porous material range was
reduced and the mean particle size was found to be 14.2
± 5.4 nm after 10 min of irradiation (Fig. 5b). Figure 5c
showed that the Al2O3 NPs were almost uniformly dis-
tributed and narrow in size (12.03 ± 3.5 nm) after 30 min
of irradiation as a result of the absorption of laser energy
which lead to the fragmentation of the particles [25].
However, the fragmentation rate of the particles de-
creased when the NPs reached their critical size after 30
min of irradiation. Increasing the total number of parti-
cles resulted in an increase in the NPs concentration,
and the agglomeration of these small particles hence the
light absorption of particles in solution was decreased.
The data obtained showed that the effect of laser irradi-
ation on the distribution size was more than on the size
of particles [11].
The hydrodynamic diameter of the Al2O3 particles in

the nanofluids can provide information on the stability
of the nanofluids. Figure 6 shows the distribution density
function of the NPs in the suspension (a) without and
with irradiation after (b) 10 min and (c) 30 min. The
gravity of the density curve provides the mean sphere
diameter. In addition, a narrow hydrodynamic size of
the particles was obtained when laser exposure after 10
and 30 min (b and c), while the particles before irradi-
ation had a widely spread interface indicating a greater
degree of polydispersity (Fig. 6a). The data obtained
showed that a sharper distribution curve of the highly
homogeneous particles was obtained after laser irradi-
ation. This could be due to the fragmentation of the par-
ticles after laser irradiation. Longer laser irradiation
times resulted in a higher fragmentation of the particles
and hence higher number of particles in solution with a
sharp distribution. It was observed that the tendency to
agglomerate increased with an increase in the number of
smaller particles in the water [7, 54, 55]. Figure 6d shows
the hydrodynamic diameter distribution of the Al2O3

particles in the nanofluids with diameters of 87.7 ±
14.59 nm, and 90.97 ± 9.21 nm and 91.57±2.61 nm for
before and after 10 and 30 min of irradiation, respect-
ively. It was found that the size distribution of the parti-
cles decreased from ~ 15 to ~ 3 nm, when the irradiation
times increased from 0 to 30min, respectively. The frag-
mentation of the agglomerates took place via a direct ab-
sorption of the laser with an end result of particles that
were almost uniform in size distribution as seen from
the Nanophox and TEM data. The data obtained showed
that the effect of laser irradiation on the distribution size
was more than that on the size of particles. However,
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the hydrodynamic size of the NPs obtained from the
Nanophox analyzer was always larger than the size of
the dry particles obtained from TEM as the hydro-
dynamic average diameter is the size of agglomerated
particles in solution. The sharp distribution and size re-
duction effects observed here have been reported in the
literature [7–10, 16–23].

Thermal Diffusivity Measurements
In order to measure the effect of laser irradiation on the
thermal diffusivity of the nanofluids, firstly, the experi-
mental setup was calibrated using distilled water as a
standard liquid. The thermal diffusivity was measured
from fitting the PE signal of the ln(amplitude) (Eq. (7))
and phase (Eq. (8)) versus the cavity length. The average
for distilled water was (1.4460.011) × 10−3 cm2/s, which
differed by < 1% from the literature [56]. Figure 7 shows
the linear plots of logarithmic amplitude versus the cav-
ity length of the Al2O3 nanofluids at different laser ir-
radiation time from 0 to 30min as a function of the
relative cavity length. The slopes of the PE signal (ln
(amplitude), phase, and average) and the resulting ther-
mal diffusivity values measured in the present work are
summarized in Table 1.

The thermal diffusivity showed an enhancement com-
pared to the base fluid. However, for the nanofluid with-
out irradiation, the thermal diffusivity was (1.444 ±
0.008) × 10−3 cm2/s, which was lower than base fluid.
This could be due to the low thermal diffusivity of PVP
in the nanofluids. The thermal diffusivity gradually in-
creased around 3–6% after laser irradiation, which was
defined as an aging effect [56, 57]. The increase in the
thermal diffusivity with longer irradiation time was a
consequence of the decrease in the clusters and agglom-
erate sizes, due to the fragmentation of the larger NPs
[7–10]. Generally, the density of the number of particles
or volume fractions of the particles increased and it was
evident that the particle size reduction increased the
nanoscale mixing effects, such as Brownian motions
[56]. Therefore, this could help to enhance the thermal
diffusivity of the nanofluids. However, the increase in
the number of particles in the solution had an influence
on the rate of laser fragmentation, due to the attenuation
of laser light in the liquid at high concentrations.
In principle, the interaction between the CW laser

beam (in our experiment 103W/cm2) and the Al2O3

clusters is governed by thermal effects which depends
on the characteristics of the laser radiation and the

(a) (b) (c)

Fig. 5 The TEM images and the relative size histograms of the Al2O3-NPs a before (16.4 ± 7.8 nm) and after laser irradiation, at b 10min (14.2 ± 5.4 nm),
and at c 30min (12.03 ± 3.5 nm), respectively
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nature of the particle. Hence, considerable research has
been directed towards decreasing the size of the particles
using various nanosecond (ns) and femtosecond (fs)
lasers running at different pulse duration [13–19, 21,
25–27]. Coincidentally, the exact same result was ob-
tained through our experiments. As a result of the nano-
fluids, in the laser irradiation, time affected mainly the
particles rather than their size. This was probably be-
cause of the effect of the laser irradiation on the frag-
mentation of the agglomerated particles to the smaller
NPs thus increasing the homogeneous particle distribu-
tion of the Al2O3 nanofluids. These results demonstrated
the surprisingly narrow distributions, with size disper-
sions in the order of the mean size, which was

(a) (b) (c)

(d)
Fig. 6 The distribution density determined using the Nanophox analyzer of Al2O3 particles in the suspensions a without, with irradiation
after b 10 min and c 30 min, and d hydrodynamic diameter distribution of NPs in nanofluids as a function of irradiation times

Fig. 7 Typical logarithmic amplitude as a function of the relative
cavity length of Al2O3 nanofluids at different irradiation time [0, 10,
and 30 min]

Table 1 Summarized results for thermal properties of Al2O3

nanofluids at different laser irradiation times

Time (minutes) Aphase Aamplitude A average α(10−3 cm2/s)

0 120.6 ± 0.8 122.6 ± 0.6 121.6 ± 0.7 1.444 ± 0.008

10 119.4 ± 0.6 121.8 ± 1.0 120.6 ± 0.8 1.468 ± 0.011

30 118.4 ± 0.9 120.4 ± 0.6 119.4 ± 0.7 1.498 ± 0.009
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confirmed by measuring TEM and Nanophox results.
This suggested that the NPs were excited and heated by
irradiation of the modulated CW laser with some heat
loss to the surrounding water, while the absorption of
the laser energy by the particles could cause further frag-
mentation of the particles to smaller possible sizes thus
increasing the total number of particles in the solution
[28]. In addition, the distribution of particle also de-
creased with an increase in the laser irradiation time,
which has been reported with other materials, such as
metal [11, 13, 14, 17] and metal oxide [9, 10, 29].

Conclusions
In conclusion, we confirmed that the modulated con-
tinuous wave laser can be used as a good photothermal
light sources to generate the thermal waves for fragmen-
tation of the clustered Al2O3 particles and enhancing
the thermal diffusivity of the Al2O3 nanofluids. Modu-
lated CW laser technique shows an enormous promise
for accurate characterization of the particle size distribu-
tion of Al2O3 nanofluids. There are some controlled ex-
periments to optimize the thermal wave generation
efficiency, such as the size of the particles, modulation
frequency, thermal properties of particles, and base fluid.
The results showed that the effect of laser irradiation on
the distribution size was more on the size of particles.
The thermal diffusivity of the Al2O3 nanofluid increased
to 3–6% with the increase of irradiation times, due to
the fragmentation of the NPs which in turn increased
the total number of particles in the solution. Therefore,
from this work, it predicated that inexpensive and com-
pact CW diode lasers can be successfully designed and
employed for the fragmentation of NPs in nanofluids.

Nomenclature

Io Source intensity
ω Angular frequency of modulated light
f Modulation Frequency

T Temperature gradient
q Energy flow
e thermal wave diffusion coefficient
φ phase of PE signal
μ Thermal Diffusion Length
k Thermal Conductivity
α Thermal Diffusivity

Abbreviations
3-D: Three-dimensional; CW: Continuous wave; DW: Deionized water;
NPs: Nanoparticles; PE: Pyroelectric; PVDF: Polyvinylidene difluoride;
PVP: Polyvinylpyrrolidone; S/N: Signal-to-noise; V: Amplitude of PE signal
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